
52 1 Homotopy

Hence, ht ı p is a homotopy between p ı F0 D p ı idX D p D idX=A ıp and p ı F1 D
p ı .qı p/ D .p ı q/ ı p, so ht is a homotopy between idX=A and p ı q.

Thus, p and q are mutually homotopy inverse, which completes the proof.

Corollary 2. If .X;A/ is aCW pair, thenX=A ! X[CA, where CA is a cone over A.

Proof. X=A D .X[CA/=CA ! X[CA. The latter follows from Corollary 1 applied
to the CW complex X [ CA and its contractible CW subcomplex CA.

Remark. Both propositions may be regarded not as corollaries from Borsuk’s
theorem but as independent theorems, only the assumption of .X;A/ being a CW
pair should be replaced, in the first case, by the assumption that .X;A/ is a Borsuk
pair, and in the second case, by the assumption that .X [ CA;CA/ is a Borsuk pair.

5.7 The Cellular Approximation Theorem

Theorem. Every continuous map of one CW complex into another CW complex is
homotopic to a cellular map.

We will prove this theorem in the following, relative form.

Theorem. Let f be a continuous map of aCW complex X into aCW complex Y such
that the restriction f jA is cellular for some CW subcomplex A of X. Thenthere exists
a cellular map gWX ! Y such that gjA D f jA, and, moreover, g is A-homotopic to f .

The expression “g is A-homotopic to f ” (in formulas, g !A f ) means that there
is a homotopy ht between g and f which is fixed on A; that is, ft.x/ does not depend
on t for every x 2 A. It is clear that if g !A f , then gjA D f jA. Certainly, g !A f
implies g ! f , but not vice versa. For example, the maps f ; gW I ! S 1, where f is
the winding of the segment about the circle mapping both endpoints into the same
point of the circle and g is a constant map, are homotopic, but not .0[1/-homotopic
(strictly speaking, we will prove this only in Lecture 6).

Proof of Theorem. Assume that the map f has already been made cellular not only
on all cells from A, but also on all cells from X of dimensions less than p. Take a
p-dimensional cell ep " X#A. Its image f .ep/ has a nonempty intersection with only
a finite set of cells of Y [this follows from the compactness of f .ep/—see Exercise 3].
Of these cells of Y, choose a cell of a maximal dimension, say, !q; dim !q D q. If
q$ p, then we do not need to do anything with the cell ep. If, however, q> p, we
will need the following lemma.

Free-Point Lemma. Let U be an open subset of Rp and 'WU ! IntDq be such
a continuous map that the set V D '!1.dq/ " U where dq is some closed ball
in IntDq is compact. If q > p, then there exists a continuous map  WU ! IntDq

coinciding with ' in the complement of V and such that its image does not cover the
whole ball dq.
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We will postpone the proof of this lemma (and a discussion of its geometric
meaning) until the next section. For now, we restrict ourselves to the following
obvious remark. The map is automatically .U#V/-homotopic to ': It is sufficient
to take the “straight” homotopy joining ' and  when, for every u 2 U, the point
'.u/ is moving to  .u/ at a constant speed along a straight interval joining '.u/
and  .u/.

Now, let us finish the proof of the theorem. The free-point lemma implies that the
restriction fA[Xp!1[ep is .A[Xp!1/-homotopic to amap f 0WA[Xp!1[ ep ! Y such
that f 0.ep/ has nonempty intersections with the same cells as f .ep/, but f 0.ep/ does
not cover the whole cell !q. Indeed, let hWDp ! X and kWDq! Y be characteristic
maps corresponding to the cells ep and !q. Let U D h!1.f!1.!q/ \ eq/ and define a
map 'WU ! IntDq as a composition

h f k−1

u −→ x −→ y −→ v = ϕ(u)

U ep ∪ f−1(eq) eq Int Dq

Denote as dq a closed concentric subball of the ball Dq. The set V D '!1.dq/ is
compact (because it is a closed subset of a closed ball Dp). Let  WU ! IntDq be a
map provided by the free-point lemma. We define the map f 0 as coinciding with f in
the complement of h.U/ and as the composition

h−1 ψ k
x −→ u −→ v −→ y = f (u)

h(U) U Int Dq eq ⊂ Y

in h.U/. It is clear that the map f 0 is continuous [it coincides with f on the “buffer”
set h.U # V/] and .A[ Xp!1/-homotopic [actually, even .A[ Xp!1 [ .ep # h.V///-
homotopic] to f jA[Xp!1[ep [because ' !.U!V/  ]. It is also clear that f 0.ep/ does not
cover "q.

It is very easy now to complete the proof. First, by Borsuk’s theorem, we can
extend our homotopy fixed on A [ Xp!1 between f jA[Xp!1[ep and f 0 to the whole
space X, which lets us assume that the map f 0 with all necessary properties is defined
on the whole space X. After that, we take a point y0 2 !q, not in f .ep/, and apply
to f 0jep a “radial homotopy”: If x 2 ep # f!1."q/, then f 0.x/ does not move, but if
f 0.x/ 2 !q, then f 0.x/ is moving, at a constant speed, along a straight path going
from y0 through f 0.x/ to the boundary of !q [more precisely, along the k-image
of a straight interval in Dq starting at k!1.y0/ and going through k!1.f 0.x// to the
boundary sphere S q!1]. We extend this homotopy to a homotopy of f 0jA [ Xp!1 [ ep

(fixed in the complement of ep), and then, using Borsuk’s theorem, to a homotopy
of the whole map f 0WX ! Y. In this way, we reduce the number of q-dimensional
cells hit by f 0.ep/ by one, and, repeating this procedure a necessary amount of times,


