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Hence, h; o p is a homotopy between po Fp = poidy = p = idxsopandpo F| =
po(qop) = (pog)op,soh,isahomotopy between idx/4 and p o g.
Thus, p and g are mutually homotopy inverse, which completes the proof.

Corollary 2. If(X,A) is a CW pair, then X /A ~ XUCA, where CA is a cone over A.

Proof. X/A = (XUCA)/CA ~ XU CA. The latter follows from Corollary 1 applied
to the CW complex X U CA and its contractible CW subcomplex CA.

Remark. Both propositions may be regarded not as corollaries from Borsuk’s
theorem but as independent theorems, only the assumption of (X,A) being a CW
pair should be replaced, in the first case, by the assumption that (X, A) is a Borsuk
pair, and in the second case, by the assumption that (X U CA, CA) is a Borsuk pair.

5.7 The Cellular Approximation Theorem

Theorem. Every continuous map of one CW complex into another CW complex is
homotopic to a cellular map.

We will prove this theorem in the following, relative form.

Theorem. Letf be a continuous map of a CW complex X into a CW complex Y such
that the restriction f | is cellular for some CW subcomplex A of X. Then there exists
a cellular map g: X — Y such that g|a = f|a, and, moreover, g is A-homotopic to f.

The expression “g is A-homotopic to f” (in formulas, g ~4 f) means that there
is a homotopy &, between g and f which is fixed on A; that is, f;(x) does not depend
on ¢ for every x € A. It is clear that if g ~4 f, then g|4 = f|a. Certainly, g ~4 f
implies g ~ f, but not vice versa. For example, the maps f, g:I — S', where f is
the winding of the segment about the circle mapping both endpoints into the same
point of the circle and g is a constant map, are homotopic, but not (0 U 1)-homotopic
(strictly speaking, we will prove this only in Lecture 6).

Proof of Theorem. Assume that the map f has already been made cellular not only
on all cells from A, but also on all cells from X of dimensions less than p. Take a
p-dimensional cell & C X—A. Its image f(e”) has a nonempty intersection with only
a finite set of cells of Y [this follows from the compactness of f(e?)—see Exercise 3].
Of these cells of Y, choose a cell of a maximal dimension, say, €7, dime? = q. If
q < p, then we do not need to do anything with the cell ¢”. If, however, ¢ > p, we
will need the following lemma.

Free-Point Lemma. Let U be an open subset of R and ¢: U — IntD? be such
a continuous map that the set V.= ¢~ '(d9) C U where d? is some closed ball
in Int D? is compact. If g > p, then there exists a continuous map : U — Int D4
coinciding with ¢ in the complement of V and such that its image does not cover the
whole ball d4.
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We will postpone the proof of this lemma (and a discussion of its geometric
meaning) until the next section. For now, we restrict ourselves to the following
obvious remark. The map ¥ is automatically (U — V)-homotopic to ¢: It is sufficient
to take the “straight” homotopy joining ¢ and ¥ when, for every u € U, the point
@(u) is moving to ¥ (u) at a constant speed along a straight interval joining ¢(u)
and ¥ ().

Now, let us finish the proof of the theorem. The free-point lemma implies that the
restriction fauxr—1Uer i (AU XP~Y)-homotopic to a map f:AUXP~ ' Ue? — Y such
that f'(eP) has nonempty intersections with the same cells as f(e), but f'(e'') does
not cover the whole cell €4. Indeed, let h: D’ — X and k: D? — Y be characteristic
maps corresponding to the cells e” and €?. Let U = h~ ! (f~!(e?) N e?) and define a
map ¢: U — Int DY as a composition
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Denote as d? a closed concentric subball of the ball DY. The set V = ¢~ (d¥) is
compact (because it is a closed subset of a closed ball D”). Let v: U — IntD? be a
map provided by the free-point lemma. We define the map f” as coinciding with f in
the complement of 4(U) and as the composition
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in A(U). It is clear that the map f” is continuous [it coincides with f on the “buffer”
set h(U — V)] and (A U XP~1)-homotopic [actually, even (A U X~ U (e? — h(V)))-
homotopic] to | uxr—1uer [because ¢ ~y—vy ¥]. Itis also clear that f'(¢”) does not
cover &7.

It is very easy now to complete the proof. First, by Borsuk’s theorem, we can
extend our homotopy fixed on A U XP~! between f|,uxr—1u» and f/ to the whole
space X, which lets us assume that the map f” with all necessary properties is defined
on the whole space X. After that, we take a point yo € €%, not in f(e”), and apply
to f'|.» a “radial homotopy™: If x € e” — f~!(g9), then f’(x) does not move, but if
f'(x) € €4, then f'(x) is moving, at a constant speed, along a straight path going
from y, through f’(x) to the boundary of €7 [more precisely, along the k-image
of a straight interval in DY starting at k' (y) and going through k~!(f'(x)) to the
boundary sphere S7~!]. We extend this homotopy to a homotopy of /|4 U XP~! U ¢?
(fixed in the complement of ¢”), and then, using Borsuk’s theorem, to a homotopy
of the whole map f": X — Y. In this way, we reduce the number of g-dimensional
cells hit by f'(e”) by one, and, repeating this procedure a necessary amount of times,



